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We study the advection of a passive scalar by a vortex couple in the small-diffusion (i.e. 
large Peclet number, Pe) limit. The presence of weak diffusion enhances mixing within 
the couple and allows the gradual escape of the scalar from the couple into the 
surrounding flow. An averaging technique is applied to obtain an averaged diffusion 
equation for the concentration inside the dipole which agrees with earlier results of 
Rhines & Young for large times. At the outer edge of the dipole, a diffusive boundary 
layer of width O(Pe-f) forms; asymptotic matching to the interior of the dipole yields 
effective boundary conditions for the averaged diffusion equation. The analysis 
predicts that first the scalar is homogenized along the streamlines on a timescale 
O(Pei). The scalar then diffuses across the streamlines on the diffusive timescale, O(Pe). 
Scalar that diffuses into the boundary layer is swept to the rear stagnation point, and 
a finite proportion is expelled into the exterior flow. Expulsion occurs on the diffusive 
timescale at a rate governed by the lowest eigenvalue of the averaged diffusion equation 
for large times. A split-step particle method is developed and used to verify the 
asymptotic results. Finally, some speculations are made on the viscous decay of the 
dipole in which the vorticity plays a role analogous to the passive scalar. 

1. Introduction 
The emergence of vortices in two-dimensional turbulent wakes has been observed in 

experiments and numerical studies (Couder & Basdevant 1986; McWilliams 1984). A 
classical example of this is the shedding of a Karman vortex street in flow around a 
cylinder at moderate Reynolds numbers (Batchelor 1967; Couder & Basdevant 1986). 
Under certain conditions positive and negative vortices can pair to form a vortex 
couple (Ahlnas, Royer & George 1987; Couder & Basdevant 1986). Vortex couples can 
also form at the head of impulsively started two-dimensional jets and plumes (Conlon 
& Lichter 1994; van Heist & Flor 1989); they are the primary agent for the transport 
of the injected momentum and vorticity. Unlike an isolated vortex which is advected 
about by the background fluid flow, an isolated vortex couple propagates in a straight 
line with constant velocity. This self-propagation property makes vortex couples 
important structures for transport of passive contaminants (e.g. heat, pollutants) and 
dynamical quantities (e.g. momentum, vorticity) from a wake or jet into the quiescent 
background flow. 

A canonical example of a vortex couple is a solution of the two-dimensional Euler 
equations called a Lamb dipole. Figure 1 (a) is the streamfunction of the Lamb dipole 
viewed in a frame of reference translating with the dipole (Batchelor 1967). The 
streamlines within the vortex couple are closed and it is surrounded by an irrotational 
background flow. In this paper we will study the advection and diffusion of a passive 
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FIGURE 1. Particle-method simulation of the advection and diffusion of a passive scalar by a Lamb 
dipole. (a) Streamlines of a Lamb vortex in a co-moving reference frame. The mixing of a line source 
of passive scalar initially released along the vertical dotted line is considered. (by) The numerical 
solution of the advection-diffusion equation (3.1) at  times t = 1,2,3,4,5 with Pe = 1000. Note that 
the shear in the dipole causes the scalar to become wrapped in a tight spiral while the diffusion spreads 
the width of the initial condition. The concentration becomes homogenized along the streamlines and 
slowly diffuses out of the dipole, being swept towards the rear stagnation point and into the exterior 
flow. 

scalar by a Lamb dipole. We consider the physically relevant case of small scalar 
diffusion; this weak diffusion can enhance mixing in flows through the interaction of 
shear and cross-stream diffusion (Rhines & Young 1983; Taylor 1953). 

The mixing of a passive scalar by the Lamb dipole velocity field is illustrated in figure 
1 (u-f) for the case where the diffusive timescale is much longer than the characteristic 
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advective turnover time (i.e. large Piclet number Pe). The numerical method is a split- 
step particle method where advection along the streamlines of the flow is alternated 
with diffusion of the particles by a random walk (Appendix A). The density of particles 
corresponds to the concentration field of the passive scalar. An initial line of passive 
scalar along the diameter is advected by the velocity field and diffuses (figure l a ) .  
Owing to shear, the initial condition is wound into a spiral with finer laminations as 
time progresses (figure 1 t i e ) .  Ultimately cross-stream diffusion acts to smooth out the 
fine-scale structure produced by the shear (figure I f ) .  The combined effect of shear and 
cross-stream diffusion is to homogenize the passive scalar on the streamlines on a 
timescale that is much longer than the advective turnover time but much shorter than 
the diffusive timescale. The scalar will then slowly diffuse across the outer streamline 
of the couple into the exterior flow, resulting in the slow decay of the scalar 
concentration within the dipole. 

The mixing of a passive-scalar distribution by a two-dimensional flow with closed 
streamlines for large Peclet numbers was described in the work of Rhines & Young 
(1983). They identified two stages of mixing. First, an arbitrary initial concentration is 
averaged along closed streamlines by a shear-dispersion mechanism. Then the averaged 
distribution diffuses across streamlines according to a one-dimensional diffusion 
equation. The mechanism of shear dispersion was first identified by Taylor (1953 ; see 
also Young & Jones 1991) in his derivation of an effective equation for the transport 
of solute in a tube. This mechanism is responsible for the rapid homogenization of 
scalar along streamlines in figure 1. In this paper a WKB technique is applied to yield 
an averaged advection-diffusion equation which describes this homogenization and 
subsequent diffusion across streamlines for large Peclet numbers. 

This averaging technique breaks down at the outer streamline of the Lamb dipole, 
where the turnover time becomes infinite owing to the presence of stagnation points at 
the front and the rear of the dipole. Scalar that diffuses across this streamline is swept 
to the rear stagnation point and into the exterior flow (figure 1). This results in a 
diffusive boundary layer at the edge of the dipole. The averaged diffusion equation is 
not valid in this boundary layer where diffusion and advection are comparable effects. 
Thus a boundary-layer analysis will be applied to describe the escape of scalar from the 
dipole. 

Similar diffusive boundary layers occur in the study of advection-diffusion by an 
infinite array of Rayleigh-Benard convection cells (Rosenbluth et al. 1987; Shraiman 
1987; Young, Pumir & Pomeau 1989; Knobloch & Merryfield 1992). In Rosenbluth 
et al. (1987) and Shraiman (1987) a steady-state solution is found for an externally 
applied large-scale concentration gradient. Diffusive boundary layers form between the 
cells; their net effect is to greatly enhance the diffusion of passive scalar transverse to 
the roll axes of the convection cells. The steady-state boundary-layer problem is 
formulated and solved using methods first applied in magnetic dynamo theory 
(Childress 1979; Childress & Soward 1989; Perkins & Zweibel 1987; Soward 1987). In 
contrast, the decay of the concentration field within the dipole is a non-steady problem 
that evolves on a slow timescale. The boundary layer must therefore be matched to a 
non-zero scalar gradient on the interior of the dipole. The method of homogenization 
has also been applied to the Rayleigh-Benard problem and to more general singly and 
doubly periodic flows (Fannjiang & Papanicolaou 1994; Knobloch & Merryfield 1992; 
McCarty & Horsthemke 1988). The method of homogenization applies averaging over 
a spatially periodic domain and avoids a detailed boundary-layer analysis. In contrast, 
for an isolated dipole, the detailed structure of the boundary layer is important in 
describing the escape of scalar into the outer flow and the homogenization method 

8 F L M  270 



222 J .  F. Lingevitch and A .  J .  Bevnof 

cannot be applied. In Young et al. (1989) non-steady solutions of the Rayleigh-Benard 
problem are found for an initial release of scalar in a single cell. An effective leading- 
order boundary condition at the edges of the cells is derived and it is shown that the 
initial diffusive spread of scalar in the convection cells is anomalous and adjusts to 
Fickian diffusion for large times. Here for the Lamb dipole an effective leading-order 
boundary condition is derived by a flux balance argument. A detailed boundary-layer 
analysis then yields the first correction to this effective boundary condition. 

The advection-diffusion equation for a passive scalar is the same as the two- 
dimensional Navier-Stokes equation for vorticity with vorticity replacing the 
concentration of the passive scalar. In the same way that diffusion depletes scalar 
within the dipole, viscous diffusion will allow for the viscous decay of the dipole. Of 
course, vorticity is a dynamic quality that is coupled to the velocity field but its 
transport is closely related to the passive-scalar problem. In high-Reynolds-number 
flows the viscous dissipation of the vortex couple occurs on a slow timescale thus 
allowing the couple to propagate large distances (Swaters 1988). The slow escape of 
vorticity from the dipole will allow for the slow deceleration and distortion of the 
dipole. This will be the subject of future research. In this limit of viscous diffusion much 
smaller than scalar diffusion, the strength of the vortex couple will remain essentially 
constant as the scalar is dispersed (Newton & Meiburg 1991). 

In this paper a quantitative theory for the mixing of an arbitrary initial concentration 
of passive scalar and its escape rate from the Lamb dipole are developed in the limit 
of small diffusion. In $2 the non-dimensional Lamb-dipole streamfunction and 
advection-diffusion equation are presented. A WKB averaging method is applied in 9 3 
to yield an averaged diffusion equation in the region of closed streamlines. It is shown 
that this averaged diffusion equation describes the rapid homogenization of scalar 
along streamlines and subsequent expulsion of a large-scale concentration gradient 
from the dipole on the diffusive timescale. After an initial averaging time of O(Pei) the 
WKB result reduces to the one-dimensional diffusion equation derived by Rhines & 
Young (1983; see also Fowler 1985). At the outer edge of the dipole near the streamline 
that separates the flow with closed streamlines from the outer irrotational flow, a 
diffusive boundary layer forms and the averaged diffusion equation breaks down. In 
$4, the boundary-layer theory in the vicinity of the outer streamline is developed. The 
leading-order effective boundary condition for the averaged diffusion equation is 
shown to be zero concentration at the outer streamline. In s 4 . 2  and 4.3 a detailed 
analysis of the boundary-layer equations leads to an integral equation for the first 
correction to the boundary layer. The matching condition between the boundary layer 
and interior concentration field yields the first correction to the effective boundary 
condition of the averaged diffusion equation. In $5.1 the averaged diffusion equation 
for the Lamb dipole is solved by an eigenfunction expansion. In $5.2 the eigenfunction 
solution is compared with a numerical solution of the advection-diffusion equation. It 
is demonstrated that the asymptotic and numerical predictions of the escape rate of 
scalar from the dipole are in good agreement. In $6 the implications of this analysis for 
the viscous decay of the Lamb dipole at high Reynolds numbers are discussed. 
Appendix A describes the split-step particle method used for the numerical solutions. 
It is shown that the split-step error in the numerical method is O(At)3 per time step. In 
Appendix B the numerical solution of the boundary-layer integral equation is 
presented. The numerical method determines the boundary-layer concentration with 
exponential accuracy. 
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2. The Lamb dipole 
In this section the basic equations governing two-dimensional fluid motion and 

advection of a passive scalar are discussed. An exact inviscid vortex-couple solution, 
the Lamb dipole, is described below. We formulate the problem of the advection and 
small diffusion of a passive scalar by this flow field. 

It is convenient to express the Navier-Stokes equations for two-dimensional fluid 
motion (Batchelor 1967; Saffman 1992) in terms of the advection and diffusion of the 
scalar vorticity w(x,  y )  : 

1 
Re 

w , + u * v w  = -V%, 

where the velocity u(x ,y)  satisfies incompressibility and can be written in terms of a 
streamfunction $(x, y )  : 

The vorticity is related to the streamfunction by 

v * u  = 0, u = (?&, -$J. (2.2) 

VZ$ = --o. (2.3) 

In two dimensions vorticity is a scalar quantity that is advected with the fluid velocity 
and is diffused by viscosity along vorticity gradients. The strength of the viscous 
diffusion is specified by the non-dimensional Reynolds number Re = L U / v ,  where L, 
U are characteristic length and velocity scales of the flow (specified below) and LJ is the 
kinematic viscosity. In the limit of large Reynolds number, the viscous diffusion is 
weak except in those regions where gradients of vorticity are large. 

A vortex couple is a pairing of regions of positive and negative vorticity that 
translates with constant velocity. Consider the inviscid limit of the Navier-Stokes 
equations in a Galilean reference frame that translates with a vortex couple. In the 
absence of viscous diffusion (Re = GO) the vortex couple will satisfy the steady Euler 
equation : 

u-uw = 0. (2.4) 

The gradient of the vorticity is normal to the streamlines, so solutions of the steady 
Euler equations must satisfy 

The Lamb dipole (Batchelor 1967) is a particular solution with the vorticity linearly 
related to the streamfunction inside a circular region of radius R and the flow is 
irrotational outside this region : 

w = 49). (2.5) 

A dipolar solution to (2.6) is given by 

AJ,(kr) sin 8, r < R  
iAkRJ;(kR) [ ( r / R )  - ( R / r ) ]  sin 0, r > R ,  (2.7) 

where J I  is the Bessel function of order 1 and k is chosen so that k R  is the first zero 
of J1: 

J,(kR) = 0. (2.8) 
x-2 
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The parameter A is the strength of the dipole and determines its propagation velocity. 
On the boundary of the Lamb dipole ( r  = R)  the streamfunction and its gradient are 
continuous. The exterior velocity corresponds to irrotational flow past a cylinder with 
far-field velocity V = &4kRJ;(kR). In the laboratory reference frame, the Lamb dipole 
propagates with velocity V. 

In practice, it is useful to rescale the problem on scales appropriate for the Lamb 
dipole. If the distances are rescaled with L = R and the velocities with U = A / R ,  this 
yields the non-dimensional Lamb-dipole streamfunction with no free parameters. The 
non-dimensional form corresponds to (2.7) with A = R = 1. At finite Reynolds 
number the Lamb dipole will decay at a rate dependent upon the rescaled Reynolds 
number; for large Re it will be argued in $ 6  that it decays on an O(Re) timescale. 

Similarly to vorticity, a passive scalar is advected with material elements of the flow 
field; in addition it is also allowed to diffuse. However, as opposed to vorticity, the 
advecting velocity field is specified independently of the concentration. The governing 
equation is the two-dimensional advection-diffusion equation : 

1 
Pe 

c,+u.vc = -vv2c, 

where the Peclet number, Pe = L U / K ,  is analogous to the Reynolds number with K the 
diffusion constant for the scalar. Physically, the Peclet number is a ratio of the diffusive 
to the advective timescales. 

Here we consider the case of the transport of a passive-scalar concentration, C(x, t )  
by the non-dimensional inviscid Lamb dipole velocity field : 

Jl(kr) sin 8, r d l  
;kJ;(k) (Y - 1 / r )  sin 6,  r > 1, 

(2.10) 

where k is the first zero of J1. 
In the limit Re + Pe & 1 the evolution of the concentration of the passive scalar will 

occur much faster than the viscous decay of the vortex couple and the assumption of 
an inviscid flow field will be a good approximation (Newton & Meiburg 1991). 

3. Averaged diffusion equation for closed streamlines 
Consider the advection-diffusion equation for the concentration of a passive scalar : 

c,+u.vc = cv2c, u = (&, -$J, (3.1) 

where u(x) is a steady two-dimensional flow with closed streamlines, C(x,t) is the 
concentration, $(x) is the streamfunction and c is the inverse Peclet number (c  = Pe-'). 
We consider the case of large Peclet number corresponding to e 4 1. The natural 
coordinate system for this problem is streamfunction coordinates ( t ,  x, 8) defined by 

where x is a scaled streamfunction coordinate and 8 is a 2n-periodic parameterization 
of the streamlines. The streamfunction scaling is chosen to balance shear and cross- 
stream diffusion. The integration contour C is a line integral counterclockwise along 
a streamline from a reference point xo($) to x; ds is a differential arclength. This 
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coordinate system will in general be non-orthogonal but the arbitrary initial phase, 
$($if) (i.e. the phase at  x o ( ~ ) ) ,  will be determined up to a constant by requiring that 
V$. V8 averaged over a streamline vanishes (i.e. the coordinate system will be 
'orthogonal on the average'). The weighting function l/lV1/1\ in the definition of O(x) 
simplifies the advective time derivative in the streamfunction coordinate system. 
Physically, the weighting function is related to the spacing between streamlines. 

The advection-diffusion equation in this streamfunction coordinate system becomes 

c, +Q($) c, = ~~~v1/1~"r,,+c.~(v"c~+2v8.w$c~~)+t(V~Hc~+~v8~~c~,,). ( 3 . 3 )  

The coefficients in the expansion of the Laplacian are 2x-periodic functions of 0 and 
are functions of the slow streamfunction coordinate, efx.  

In (3.3) the scalar is advected along the closed streamlines of the flow with angular 
frequency a($). The frequency Q($) is a slowly varying function of x; thus the scalar 
will be sheared along the streamlines as it is advected. On the small cross-stream scale, 
O(&), the scalar will be sheared by an order-unity amount along streamlines over times 
of O ( E - ~ ) .  The sheared scalar becomes wrapped up into thinly spaced layers (see figure 
1). The weak cross-stream diffusion smears the width of the layers and homogenizes the 
concentration in the interstitial regions between the layers. The net result is that the 
initial concentration is averaged along streamlines on a timescale of O(af), when the 
diffusion width of the layers equals the interstitial spacing, and is known as shear 
dispersion (Rhines & Young 1983). The scalar then diffuses across streamlines on the 
diffusive timescale, O(SC'). 

The physical interpretation of (3.3) suggests a WKB ansatz for the concentration 
field (Knobloch & Merryfield 1992). To leading order, the concentration on particle 
paths will be constant on the advective timescale. Over longer times diffusion acts to 
smooth out the small scales produced by shear. 

This suggests the ansatz 

C(t, x, 8) = C"[; 7,, x) + €+ C'([, 8 ;  7,, x) + . . ., (3.4) 

where 7, = €=i3t, 6 = 8 -a($) t .  (3.5) 

The leading-order concentration C o  is the mean concentration on the characteristics, 
constant on the advective timescale and evolving on the slow timescales 7,, due to shear 
and diffusion. The corrections ( C f L ,  n > 0) have period T = 2n/Q along the 
characteristics, with zero mean. This ansatz is justified a posteriori by the expansion 
below. 

We define the material derivative, 

- = a, + a(@) a,. D 
Dt 

The evolution of the mean concentration Co on the slow timescales is found by 
requiring that the corrections (C',  C2 ...) be 2x-periodic in 8 or equivalently T-periodic 
on the advective timescale. We now show the details of the WKB averaging theory 
which results in an averaged diffusion equation for a region of closed streamlines. The 
O( 1) equation describes advection of the initial condition along the streamlines : 

~- DCo z C,"+Q($) c; = 0. 
Dt (3.7) 

Note that this requires that Co is a function of 6 and the scaled variables, r,, x. 
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At O(&) 

(3.8a, b) DC1 
-- - 1V$l2 cix- c.", zl(6, 0; 7, x). Dt 

The inhomogeneous term is 2~-periodic in 6 and 0. There is a solvability condition on 
the inhomogeneous term for C' to be T-periodic on the advective timescale. The 
solvability condition can be derived by transforming (3 3) to characteristic coordinates 
(I, 0, x )  + ( t ,  (, x). The equation for C1 becomes 

c; = Zl(6, 6+Dt;  7, x), (3.9) 

where C1 will be periodic on the advective timescale if and only if the inhomogeneous 
term has zero time average over one period, T; otherwise it will grow secularly in time. 
The solvability condition is 

(3.10) 

This condition determines the evolution of Co on the T~ timescale. Defining the average 
over B by an overline, 

the solvability condition for (3.8) becomes 

(3.11) 

(3.12) 

On a timescale of O(e-5) cross-stream __ diffusion occurs on a streamfunction scale O(&) 
with diffusion coefficient IV$lz. 

The concentration C1 is uniquely determined by (3.8), (3.12) and by requiring that 
it have zero mean on the characteristics (i.e. 5 = constant): 

c1 = ( A  -A) qx, (3.13 a) 

At O(eg) 

(3.13 b) 

(3 .14~)  

6; 7, X ) ,  (3.14b) 

where CtX and C:, can be written in terms of derivatives of C o  using (3.13a): 

C;, = ( A  - A) Cixxx + O(ei Cix,  ei C:xx), 

c:, = ( A  - A) (m c;x)xx. 
(3.15 a) 

(3.15 b) 

The solvability condition, (3.10), applied to I, gives the evolution of Co on the T~ 

timescale : 

C:z = ((V$12(A - A)) C i x x , + ~ C ~ +  2(VB.V$) C:x- ( A  -A) (IV@J2Cix)xx. (3.16) 
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The function A - A  is a periodic function of B with zero mean so its average is 
identically zero. Using 

(3.17) 

a consequence of the definition of A in (3.13b), yields 

lV$12(A-A) = ( l V $ l ' - m ) ( A - A ) + ( V $ . ( 2 ( A - A )  = OA,(A-A) = 0. (3.18) 

By properly choosing the phase $($), the coordinate system can be made 'orthogonal 
on the average' : 

(3.19) 

The benefit of this choice is that it eliminates the cross-derivative term in the O(&) 
solvability condition (3.16). This explicit expression for the phase is complicated but 
mercifully only enters the calculation in computing the diffusion along streamlines. 
Using (3.18) and (3.19) in (3.16), the evolution of Co on the 72 timescale simplifies nicely 
to 

c:2 = VZ$ c;. (3.20) 

The concentration C2 is uniquely determined by requiring that it have zero mean on 
the characteristics; this yields 

c2 = (B,-B;)c;, , ,+(B,-B;)c;+(B,-B,)c;~ (3.21) 

- 

The functions B, are 2n-periodic functions of 6' and the slow streamfunction eix. 
At O(E) 

IV$ , (~C;~+V~$C;+~V~ ' .  v$c;,+ v2ec;+(v6'(2c;8 (3.22a) 
DC3  -= 
Dt 

- q3 - c;, - c + lVkJ2(A$ - X$) c;,, 
= & ( L O ;  7, x). (3.22 b) 

The solvability condition applied to (3.22) gives the evolution of Co on the 73 timescale: 

c9 = Iv8(2c;, + vzec; + O(c;,,), (3.23) 

corresponding to diffusion along streamlines. The terms in solvability condition (3.23) 
that are O(C;,,) with be O(s) when we rescale the streamfunction. 

The solvability conditions yield the slow-time evolution of Co in a Lagrangian 
reference frame. From these we can reconstitute an equation governing the evolution 
of co: 

(3.24a) 

1- 2- - - 
= f9 Jv$l2c;, + sz V2$ c; + elVBJ2C;* + €vZ$c; 

+ O(eC;xx 2 CiX, et c;). (3.24 b) 

The error term in (3.24b) arises from higher-order derivatives of concentration with 
respect to x in the solvability conditions. All of the error terms become O ( 2 )  upon 
rescaling the streamfunction. 
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The averaged coefficients in the averaged diffusion equation can be expressed in 
terms of the circulation, {($) = 4 lo$/ ds (where integrals in the counterclockwise 
direction along streamlines are defined to be positive), and the angular frequency a($) 
by converting the integrals around streamlines into area integrals (Rhines & Young 
1983). Defining the area integral Q($) of a function F(x,y)  as 

Q<$) = 1 F(x, v> d A  
.d(&) 

then the average of F(x ,y )  around a streamline is related to Q by 

(3.25) 

(3.26) 

The integral Q($) can, in some instances, be evaluated in terms of the circulation 
around the streamline and its derivatives. Using (3.25) and (3.26) the averages of lV+l', 
V2$ and V2H become 

(3.27) 

where the last expression follows as a consequence of the coordinate system being 
'orthogonal on the average'. The expression for the average of (VHI2 is not simplified 
by the application of the above identifies. Notice that it only appears in the diffusion 
along the streamlines. Using (3.27) in (3.24) and rescaling $ = $x, the reconstituted 
equation for Co becomes 

c;+9($)co, = E+C($)  a($) C ; ) o + € ~ c ; o + O ( € " ) .  (3.28) 

The net result of the averaging is to replace the periodic coefficients of the Laplacian 
operator in (3.3) with their averages on closed streamlines. Equation (3.28) describes 
the averaging of an arbitrary initial condition to a state in which concentration is 
constant along streamlines and the subsequent decay of this homogenized distribution. 
To show the homogenization of Co we introduce the quantity I(t), a measure of the 
deviation of the concentration from its average value on streamlines: 

(3.29) 

where C and c" are defined by 

- 1  
C = z l r C o d H ,  c " ~  Co-C. (3.30) 

The quantity c obeys (3.28). Multiplying (3.28) by c" and transforming to a rotating 
coordinate system (Y = $, T = t ,  = 0-Qt )  yields, 

Multiplying (3.31) by l / a  and integrating with respect to f and Y gives an inequality 
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for I,,,. Consider an exponentially localized distribution of concentration in the region 
a < $ < h. Assuming that the timescale for homogenization along streamlines is much 
faster than that of diffusion across streamlines then the boundary terms from the 
integration will remain exponentially small during the homogenization. This 
assumption will be shown to be true in the following. An upper bound for I ,  satisfies 

(3.32) 

The quantity I ( r )  will be a monotonically decreasing function of time. For large 
enough times the integrand of (3.32) will be dominated by the term proportional to T 2 ;  
thus I ( r )  is asymptotically bounded by 

The product of circulation and angular frequency satisfies the inequality 

(3.33) 

(3.34) 

where L is the length of the streamline and umin is the magnitude of the smallest 
velocity on the streamline. Using (3.34) and 

which follows from the fact that c has zero mean, (3.33) implies 

I ,  < - ~ E T ~ u ~ ~ ~ ( S Z $ ) ~ ~ ~  I ,  

Z(T) < I(0) exp (- &IT3) 

M = $Ukin(Q$))min, 

(3.35) 

( 3 . 3 6 ~ )  

(3.36b) 

(3.3 6 c )  

where is the minimum value of a k i n  the region a < $ < b. Thus (3.36) shows 
that an exponentially localized perturbation from the mean concentration will decay 
exponentially in time on an O(6-z) timescale. By the linearity of the advection-diffusion 
equation we apply the superposition principle to conclude that the leading-order 
concentration C o  is averaged along streamlines on this timescale in regions where A4 
is bounded from below. Notice that the averaging does not occur in regions of zero 
shear. In the Lamb dipole the shear is bounded away from zero except at the outermost 
streamline (Y = 0) where the shear approaches zero like l/(log (Y))'. At the streamline 
!P = 0 homogenization does not occur because of the vanishing shear. Below we show 
that the WKB ansatz is invalid at this outermost streamline. Thus the region 
surrounding this outer streamline will be analysed separately in 94. 

After a time of O ( d )  the concentration becomes homogenized on the streamlines, 
Co + C, and (3.28) becomes a one-dimensional diffusion equation for the average 
concentration on the streamlines : 

(3.37) 
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This agrees with the one-dimensional diffusion equation obtained by Rhines & Young 
(1983). There still remains an O(d) periodic modulation of the concentration along 
streamlines due to the higher-order corrections of the WKB solution but all of the 
corrections have zero mean (c" = 0 for n > 0) and hence do not contribute to the 
average concentration along streamlines. 

For the WKB averaging technique to be valid it is required that c = Tadv/Tdiff 4 I : 
the timescale for diffusion must be much larger than the advective timescale. 
In terms of dimensional variables this requirement translates to R2Q >> K where 
Tadv - 1/Q, Tdiff - R 2 / ~ ,  R is the 'radius' of a closed streamline and K is the diffusion 
constant. Thus the WKB averaging becomes invalid where R or SZ go to zero. 

For the case of the Lamb dipole, R goes to zero at the centres of the closed 
streamlines, $ = $m, and SZ approaches zero at the separatrix, $ = 0. The breakdown 
in the averaging at the centres occurs because the advective and diffusive lengthscales 
are comparable when the radius of the streamlines goes to zero. A local analysis about 
the centres shows that the streamlines are elliptical. To leading order on small scales 
near the centres there is a balance between advection and diffusion. In this region the 
exact solution of the advection-diffusion equation shows that the concentration 
becomes constant along streamlines on a timescale much faster that the shear- 
dispersion timescale and thus matches with the WKB solution. 

The breakdown of the averaging at the separatrix is more severe. In $4 boundary- 
layer methods are used to describe the concentration field in the neighbourhood of the 
separatrix and its escape from the dipole in the boundary-layer region. 

4. Boundary-layer theory 
An averaged diffusion equation, (3.28), for the concentration in a region of closed 

streamlines was derived in $3. The concentration is homogenized along the closed 
streamlines on an O(&) timescale, and diffuses across the streamlines on a slower O(e) 
timescale. In this section the escape of scalar from the dipole is discussed. 

The streamlines for the Lamb dipole change character at $ = 0 as shown in figure 
1 (a). On the separatrix, I++ = 0, there are two stagnation points where the fluid velocity 
drops to zero. On the interior, there are two regions of closed streamlines and outside 
the separatrix the streamlines are no longer closed (the outer flow is irrotational). 
Scalar diffusing across the separatrix may irrecoverably escape from the dipole at the 
rear stagnation point as it is swept away by the outer flow. 

As the closed streamlines approach the separatrix, the period of advection around 
a streamline becomes infinite owing to the stagnation points. The averaged diffusion 
equation breaks down as the period of advection approaches the diffusive timescale. In 
the neighbourhood of the separatrix, a diffusive boundary layer of width O(ei) forms 
that connects the concentration in the dipole core with zero concentration in the 
exterior flow, figure 2. In this diffusive boundary layer the gradients of the 
concentration are large and diffusive and advective effects are comparable. 

In $4.1, the neighbourhood of the rear stagnation point is examined. A solution to 
the advectiondiffusion equation valid in this region is divided. It is shown that a finite 
proportion of the scalar entering the boundary layer is ejected from the rear stagnation 
point into the outer flow. It is argued heuristically that the leading-order boundary 
condition on the averaged diffusion equation is vanishing concentration in the 
boundary layer. In $4.2 we derive matched boundary-layer equations for the region 
near the separatrix. In $4.3 we utilize the boundary-layer equations to write an integral 
equation for the O($) boundary-layer profile. A numerical solution of this integral 
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FIGURE 2.  Lamb-dipole boundary-layer regions. A diffusive boundary layer of width O($) forms at 
the outer edge of the dipole and along the centreline. Scalar diffuses into the boundary layer from the 
interior of the dipole and is flushed downstream at the rear stagnation point (R). Local coordinates 
(ql, sl) and (r2, sp)  are introduced along the streamline $ = 0 in the boundary-layer analysis. 

equation is found, and matching to the interior flow yields a boundary-condition 
correction to the averaged diffusion equation of O($). 

4.1. The rear stagnation point 
The rate of escape of scalar from the dipole is constrained by how fast it can escape 
from the boundary layer into the outer flow. Scalar near the separatrix is swept to the 
neighbourhood of the rear stagnation point and is either reinjected into the interior of 
the dipole or escapes into the exterior flow. The exodus of scalar from the dipole at the 
rear stagnation point can be understood by locally expanding the velocity field in its 
neighbourhood. In this section the advection-diffusion equation is solved in the 
neighbourhood of the rear stagnation point, and it is argued heuristically that the 
concentration falls to zero in the boundary layer. 

Consider a coordinate system with its origin at the rear stagnation point. In this 
vicinity the velocity field can be approximated by u = (ax, -ay), where a determines 
the strength of the stagnation point flow. An initial point source of scalar at (xo,yo), 
within the boundary layer, evolves according to the advection-diffusion equation 

(4.11 c, + axc ,  - aycg = €V2C + S(x - x,) S( y -yo) 6( t) .  

Rescaling lengths on the boundary-layer scale X = x/d, to balance diffusive and 
advective effects, yields 

c, + CCXC, -aYC, = v2c+ (l/e) S(X-X0) S( Y -  r,) S(t) .  (4.2) 
The weighting of the source term yields an integrated concentration of unity for t > 0. 
Equation (4.2) can be solved exactly by transforming to characteristic variables 
(x,y, t )+ ( [ ,v ,  T )  (see Saffman 1992, p. 264; Burgers 1948; and Bernard 1990 for a 
related treatment) : 

In these coordinates, (4.2) becomes a diffusion equation with a time-dependent 
diffusivity : 

(4.3) [ = e --at X ,  7 = eUtY, T =  t. 

C,  = e-2aTC55+e2aTCvv+ (1 /e) 8([- X o )  6(y - 5) 6(T).  (4.4) 
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FIGURE 3. Rear-stagnation-point region. (a) In the neighbourhood of the rear stagnation point of the 
Lamb dipole the leading-order term in the streamfunction is @ = axy. (b)  A fractionfof the scalar 
released at (.Yo, &) remains in the right half-plane (interior of the dipole) and the remainder escapes 
into the left half-plane (outer flow). 

Equation (4.4) can be solved with a double Fourier transform in (g, 7). Inverting the 
transform and converting the solution back to ( X ,  Y )  coordinate yields 

C(X, Y, T )  = 
-a exp( --a (Xe-"T - X,J2 --a t YeaT - W ) .  (4.5) 2n(eaT - e+') 2( 1 - e-2aT) 2(ezaT - 1) 

This solution will be used below to examine the escape of scalar from the dipole near 
the rear stagnation point. 

Consider a point source of concentration in the boundary layer at (Xo,  q), figure 3. 
The fraction of scalar,f, that ultimately escapes to the left half-plane can be computed 
exactly as an integral of (4.5) in the limit as T+ 03: 

f = lim 1, d Y I,; dX C(X, Y,  T )  

The left half-plane in figure 3 corresponds to the outer flow in the vicinity of the rear 
stagnation point and the right half-plane corresponds to the interior of the dipole. 
Consequently, f i s  the fraction of the scalar that escapes permanently from the dipole. 
Clearly an order-unity fraction of scalar in the boundary layer escapes at the rear 
stagnation point. 

These results can be interpreted heuristically as follows. The local analysis in the 
vicinity of the rear stagnation point suggests that the boundary layer expels scalar into 
the outer flow much faster than scalar can diffuse into the boundary layer from the 
interior of the dipole. We conclude that the boundary layer adjusts on an order-unity 
timescale, much faster than the timescale for diffusion in the interior of the dipole. This 

T-CC 

= :<I - erf[~,(+)$. (4.6) 



Advection of a passice scalar by a vortex couple 233 

justifies treating the boundary layer of the dipole adiabatically in $4.2. The flux out of 
the boundary layer can be estimated as the integrated concentration in the boundary 
layer multiplied by the escape rate. Above we argued that the rate of escape of scalar 
from the boundary layer into the outer flow is order unity, thus cut K 6: CbL, where C,, 
is the boundary-layer concentration. The flux into the boundary layer is supplied from 
the interior of the dipole and is given by 

where A is an integration contour along a streamline in the matching region between 
the boundary layer and the interior of the dipole, r2 is a unit normal pointing into the 
boundary layer from the interior as shown in figure 2, and C,, - O(1) because the 
gradient of the concentration in the interior of the dipole is of order unity. Equating 
the fluxes into and out of the boundary layer gives an order of magnitude estimate for 
the boundary-layer concentration : 

(4.8) 

To leading order the concentration in the boundary layer vanishes. In $54.2 and 4.3 
a boundary condition of the form 

C -  e~-C$+o(c) at y? = 0 

c,, K s q  4 1. 

(4.9) 
ib  - 
a 

is derived, where b / a  is a constant determined in the solution of the leading-order 
boundary-layer equations. This correction term will yield a boundary layer of thickness 
O(d) at the separatrix of the dipole to smooth the discontinuous concentration 
gradient present in the leading-order solution. 

4.2. Boundary-layer coordinate transformation 
In this section we formulate the boundary-layer equations for the Lamb dipole in the 
vicinity of the streamline y? = 0. Boundary layers of the type considered here have been 
studied previously in the context of dynamo theory (Childress 1979; Childress & 
Soward 1989; Perkins & Zweibel 1987; Soward 1987), convection cell transport theory 
(Rosenbluth et al. 1987; Shraiman 1987; Young et al. 1989) and viscous boundary- 
layer theory (Harper 1963). In the present case, the boundary-layer solution will yield 
an O(ei) correction to the effective boundary condition of the averaged diffusion 
equation. In the previous work, the boundary-layer equation was transformed into a 
diffusion equation on the half-plane with zero or constant boundary condition in the 
far field. In 94.3 it is shown that the boundary-layer equations for the Lamb dipole can 
be formulated as an integral equation for the boundary-layer profile. The boundary- 
layer concentration must match to a zero concentration outside the dipole and a 
linearly growing concentration in the interior of the dipole to a match the WKB 
solution found in $3. 

A local boundary-layer coordinate system illustrated in figure 2 is defined in the 
neighbourhood of the separatrix, 9 = 0. Let x = f ( s )  be the position vector along the 
streamline as a function of arclength s, 2(s) be the unit normal to the curve &), and 
7 be a boundary-layer-scaled coordinate along the normal direction. A general position 
vector and the leading-order terms of the gradient can be computed in ( ~ , s )  

(4.10) coordinates : 

where f(s) is the unit tangent to T(s). 
x = f ( s )  + & qn^(s), v = s"fi(s) d7 + f(s) as, 
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In terms of (9, s) coordinates, the leading-order terms in the advection-diffusion 
equation become 

u(s) c, - qu’(s) c, = c,,, + (eC,,) + O(t-i), (4.1 1) 

where u(s) is the magnitude of the flow velocity along T(s). The error term represents 
higher orders in the Taylor expansion of the velocity and Laplacian. Note also that the 
time derivative is O(E) owing to our assumption of an adiabatically adjusting boundary 
layer. The boundary-layer scaling in (4.10) is valid away from the stagnation points; 
near a stagnation point, diffusion along the streamlines (eC,,) is comparable to 
diffusion across streamlines as is made clear below. 

The boundary __ layer of the Lamb dipole consists of a piece along the centreline of the 
dipole ROF, and a piece along the outer streamline of the dipole at r = I ,  FO’R (see 
figure 2). Equation (4.1 1) is valid in each of these regions separately and the boundary- 
layer solutions must be matched at the stagnation points. Here, instead of matching the 
solutions of the boundary-layer equations we show by a transformation of coordinates 
that boundary-layer equations from the two regions can be transformed into a single 
advection-diffusion equation in the neighbourhood of a stagnation point. This 
transformed equation can then be analysed using the Green’s function (4.5) found in 
$4.1. 

Here we consider the matching of the boundary-layer equations at the front 
stagnation point F. The matching at the rear stagnation point R proceeds in a similar 
fashion. Introduce coordinates (ql ,  sl) for boundary layer m a n d  (v,, s,) for boundary 
layer with origin at F as shown in figure 2. The velocities along the streamline 
$ = 0 in (4.1 1) are given by uI(sl) and uz(s2) for boundary layers and I;o’ 
respectively Equation (4.11) for the boundary layers becomes 

91 u;(sl> c7, - z5(s1) c,, = c7, ’II + ~ C , ~ l s l  + O(t-9. (4 .12~)  
7 2  uXs2) c?/, - u2(s2) cs2 = c7p?/2 + “CS2 8% + O ( 4 .  (4.1 2 b) 

In (4.12) we retain the streamwise diffusion terms eCSs because they become 
important in the overlap region of the boundary layers near F. All of the remaining 
neglected terms are O($) throughout the boundary layer. Equations (4.12) can be 
transformed into a single equation using a change of variable given by 

(4.1 3 a) 

(4.13b) 

where a is a constant to be specified below. In this twiddled coordinate system 
equations (4.12) become 

aq, Cq1 - afl cg, = cqlql + (df, s,) + O(&, (4.14a) 
a& c:, - C ( q 2  cq2 = ciz y2 + (t-Cg,:,) + O@), (4.146) 

The streamwise diffusion terms Cis in (4.14) are negligible except in the coordinate 
overlap region near F. In this overlap region the Taylor expansions of the velocities are 
ul(sl) = as, + O($) and uz(s2) = asz + O(s;), where a is the strength of the stagnation- 
point flow given by the Taylor expansion of the Lamb-dipole streamfunction at the 
stagnation point (i.e. a = -kJ;(k)) .  Substituting these Taylor expansions into (4.13) 
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we see that in the coordinate overlap region the change of variables becomes the 
identity transformation. This suggests that we define a ‘composite coordinate system’ 
constructed from the twiddled variables in (4.13) : 

(4.15) 

In this coordinate system (4.14a, b) become a single stagnation-point equation for the 
concentration in boundary layer OFO’ : 

xc, - y c ,  = c,, + c,, + O(&. (4.16) 

Equation (4.16) is a steady-state advection-diffusion equation in the vicinity of a 
stagnation point and can be solved using the Green’s function (4.5) derived in 54.1. The 
solution of (4.16) for the concentration profile at 0‘ due to a unit point source of flux 
in the boundary layer at 0 is given asymptotically by 

F(x) = ;( 1 + erf (x)), $ = ei Y, (4.17b) 

D, = Lo u,(s’) ds’, D, = L o  u,(s’) ds’ (4.1 7 c) 

where so, so, are the arclengths from F to 0,O’ respectively along the streamline $ = 0. 
The solution (4.17) is conveniently expressed in terms of the boundary-layer-scaled 
streamfunction Y. Similarly the concentration profile at  0 due to a point source of flux 
at 0‘ is given by G(M, D,; Y, D2).  We use (4.17) in 54.3 below to construct an integral- 
equation return map for the boundary-layer concentration. 

4.3. Boundary-layer integral equation 
The leading-order boundary layer for the Lamb dipole evolves adiabatically owing to 
the slowly changing flux into the boundary layer from the interior of the dipole as 
discussed in 54.1. In 44.2 we showed that the boundary-layer equations could be 
transformed into a steady advection-diffusion equation in the neighbourhood of a 
stagnation point and we found the Green’s function solution for this stagnation-point 
equation. The solution for the boundary layer now becomes an integral equation for 
the boundary-layer profile. In this section we formulate the integral equation, which 
can be interpreted as the fixed point of a return map. 

The Green’s function (4.17) is convoluted with the boundary-layer profile at 0 to 
yield the boundary-layer profile at 0‘. A similar convolution with the boundary-layer 
profile at 0’ in turn maps the boundary-layer profile back to 0 (see figure 2). 
Periodicity requires that the boundary-layer profile be mapped to itself after one 
traversal of the boundary layer. This yields the boundary-layer integral equation. 

The boundary-layer Green’s function (4.17) is essentially a solution to a diffusion 
equation multiplied by a weighting function that expresses how much of the flux 
escapes at the stagnation point. In fact the Green’s function solution using (4.17) is 
equivalent to the boundary-layer solution derived by Childress (1 979) using a different 
method. He argues that cross-stream diffusion occurs in the boundary layers between 
stagnation points but is negligible near the stagnation points owing to the increased 
separation between streamlines in the vicinity of the stagnation point. The stagnation 
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point therefore serves only to advect scalar between boundary layers with negligible 
diffusion. The advantage of the method presented here is that it allows the formal 
expansion of the effects at the stagnation point. 

The return map for the boundary-layer concentration becomes 

C'( Y') = lom d YG,( Y, Y )  C( Y),  

C"( !P) = l:m d'V'G,( Y, Y )  C'( Y),  

(4 .18~)  

(4.186) 

where C, C' and C" are the boundary-layer profiles at 0, 0' and 0 respectively. The 
periodicity condition for the boundary layer becomes C( !P) = C"( !P). The kernels G, 
and G, are constructed from (4.17) so that the concentration satisfies appropriate 
boundary conditions (to be discussed below). 

For the boundary-layer solution at 0 we impose a symmetry condition that the 
concentration be an even or odd function of Y across the centreline of the dipole, m. 
This will lead to even and odd boundary-layer solutions which will smoothly connect 
the even and odd eigenfunctions of the reduced diffusion equation. The other boundary 
condition to be imposed is a requirement that the boundary-layer concentration 
smoothly match to the WKB solution in the far field. The boundary condition at 0' 
is that the concentration should decay exponentially outside the dipole (Y + - a) and 
the concentration should match the WKB solution on the interior of the dipole. 

In the far field (Y --f co) the boundary-layer return map (4.18) becomes a convolution 
of the concentration with a Gaussian and is equivalent to the solution of the diffusion 
equation : 

u 

(4.19) 6 -  c - 0 C Y B ,  Y+W. - 2x: 

Equation (4.19) is precisely the inner limit of the averaged diffusion equation (3.28) 
expressed in terms of inner variables and neglecting the time derivative. In the 
matching regime, the concentration is constant along streamlines and solutions of 
(4.19) become 

C = a Y + b ,  Y + m ,  (4.20) 
where a and b are constants. 

It is the interior of the dipole that supplies the concentration flux to support a non- 
trivial boundary-layer solution. Expressing the matching condition (4.20) in outer 
variables gives the O(&) correction to the effective boundary condition of the averaged 
diffusion equation: 

ib 
= €"+ O(F). (4.21) 

The constants a and b in the matching condition are not independent; their ratio is 
fixed and they are related by the solution of the boundary layer. Specifying a for 
instance, fixes the flux into the boundary layer from the interior. Once the flux into the 
boundary layer is specified, b is determined by the solution of the boundary-layer 
equation. The boundary-layer solution will complete the specification of the matching 
condition. 

Boundary-layer integral equations of the type given here have been solved 
analytically in some instances by the Wiener-Hopf method (Childress 1979 ; Childress 
& Soward 1989; Soward 1987). Thus far we have only obtained a numerical solution 
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FIGURE 4. Symmetric and antisymmetric boundary-layer solutions. A unit flux of scalar from the 
interior of the dipole into the boundary layer yields the concentration profiles C( ‘u) at the centre of 
the Lamb dipole (0) (see figure 2). The concentration in the boundafy layer asymptotes to a unit slope 
in the far field. The intercepts of the asymptotes determine the U(@) effective boundary condition of 
the averaged diffusion equation. 

to (4.18) (which is exponentially accurate). The numerical discretization of (4.18) is 
discussed in Appendix B. Figure 4 shows the symmetric and antisymmetric boundary- 
layer solutions at 0. The constant ratio b /a  in (4.21) is given by 3.178637 5 
(0.452 442 9) for the (anti)symmetric boundary layers. 

5. Decay rate of the averaged concentration 
In this section the numerical solution of the full advection-diffusion equation by a 

particle method is compared with an eigenfunction solution of the averaged diffusion 
equation (3.37). In 55.1 the leading-order approximation for the smallest eigenvalue is 
solved exactly. The 0 ( c i )  correction to this eigenvalue is computed using the 0(&) 
correction to the boundary condition (4.21) derived in $4. In 55.2 the eigenfunction 
solution is compared to a numerical particle method solution of the advection-diffusion 
equation for a delta-function initial concentration at the centre of one of the lobes of 
the Lamb dipole. The eigenfunction and numerical solutions are found to converge in 
the limit e +. 0 thus validating our asymptotic analysis. 

5.1. Eigenmodes of the averaged dif fsion equation 
In 5 3 we elucidated the shear-dispersion mechanism which homogenizes an arbitrary 
initial concentration in a region of closed streamlines on an O(Pei) timescale. The 
decay of the averaged concentration is governed by a one-dimensional diffusion 
equation (3.37) repeated here for convenience : 

with boundary condition 
C = d ( b / a )  C, at y? = 0, 
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where b/a  is a constant determined by the boundary-layer analysis in $4.3. Here we 
solve equation (5.1) by an eigenfunction expansion. Owing to the symmetry of the 
Lamb dipole we consider an eigenfunction expansion in symmetric and antisymmetric 
eigenmodes satisfying 

&((PI = - 4 3  - +)? $",$I = 4 x -  $)> (5.3) 
where qY(g5") are the symmetric (antisymmetric) eigenfunctions. The eigenfunction 
expansion for the averaged concentration becomes 

cc 

C($, t )  = C ( ~ , e ~ ~ a , ~ ~ ~ ( ( P ) + d , e ~ ~ ~ i ~ g 5 ~ ( $ ) ) .  (5.4) 
n =n 

This gives a Sturm-Liouville eigenvalue problem for the decay rates A",' and the 
eigenmodes g 5 : s s .  In general the antisymmetric and symmetric modes will have different 
decay rates. All of the decay rates are real and negative and the lowest symmetric 
eigenvalue, A& governs the rate of escape of scalar from the dipole. Dropping the 
(anti)symmetric superscripts to simplify notation, the decay rates and eigenfunctions 
can be obtained by the perturbation expansion 

(5.5a) 
(5.5b) 

The leading-order problem for the eigenmodes on [0, $,I, where $, is the maximum 
value of the streamfunction within the dipole, becomes 

(5.6a) 

$f) = 0 at $ = 0,  lim ($- $m) $fk = 0. (5.6b) 

The boundary condition at + = $, is a boundedness condition on the eigenfunction 
at $ = $,. At leading order the slowest decaying mode ( n  = 0) can be found exactly: 

8 - 8 ,  

4:) = A+, A = 1.72+, hr' = - k 2  == -14.68+, (5.7) 
where k is the first zero of the first Bessel function, J1, and the normalization constant, 
A ,  has been chosen so that $r)(y!!,) = 1. The slowest decaying eigenmode is 
proportional to the streamfunction at leading order. Note that, the leading-order decay 
rates for the symmetric and antisymmetric modes are identical. For n > 0 the 
eigenmodes and eigenvalues are found numerically by shooting. The first five leading- 
order eigenmodes are shown in figure 5 .  

At O(ei) 
(5.8a) 

$:) = (b/a)$:& at + = 0, lim ($-$m)$i& = 0. (5.8b) 

The homogeneous version of (5.8) has a non-trivial solution so there is a solvability 
condition on (5.8) in order for a solution of the inhomogeneous problem to exist. The 
solvability condition will determine the decay rate corrections A:) uniquely. The 
solvability condition is a result of the Fredholm Alternative Theorem. Defining the 
inner product (u,  v) : 

p - ,/rm 
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FIGURE 5. First five leading-order eigenmodes of the averaged diffusion equation. The eigenfunctions 
(4,) and eigenvalues (A,)  of the averaged diffusion equation were determined numerically by 
shooting. Here the streamfunction @ is divided by its maximum @, and the eigenfunctions are 
normalized to unity at @,. Note that for n = 0 the eigenfunction is proportional to the streamfunction. 

the solvability condition becomes 
(5.10) 

Integrating the left-hand side of (5.10) by parts and using boundary condition (5.8b) 
gives an expression for A:) : 

(1) - @/a)  50($t$+o>2 (5.11) 

where b /a  is given by the boundary-layer solution and c0 is the circulation about the 
streamline $ = 0. The U ( d )  correction to symmetric and antisymmetric decay rates will 
differ owing to the differing values of ratio b /a  for the symmetric and antisymmetric 
boundary layers (see $4.3). 

The correction to the n = 0 decay rates can be computed exactly for the Lamb 

($t), L $ p )  = A?) ($90) n ,  $p). 

An - 27c($;),$p) ’ 

(5.12) 
the n = 0 decay rates become 

A: = - 14.68 + 18.72~:+ U(e), 
A: = - 14.68+ 131.50~;+O(t.). 

(5.1 3 a)  
(5.13b) 

With solvability condition (5.1 l), equations (5.8) are solved for $:). 

5.2. Comparison of asymptotic and numerical solutions 
The eigenfunctions computed in $ 5.1 are used here to calculate the time evolution of 
an initial point source of concentration at $ = $, in one of the lobes of the Lamb 
dipole. Consider a point source at $ = $, normalized so that the integrated 
concentration within the dipole at t = 0 is unity: 

(5.14) 
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FIGURE 6. Integrated concentration us. time. (a) Leading-order eigenfunction expansion and 
numerical solution. The integrated concentration within the dipole decays on an O(Pe) timescale st. 
The convergence of the numerical results to the eigenfunction solution with decreasing B is slow owing 
to large correction terms (O(@)) neglected in the decay rates. (b) Eigenfunction expansion with first- 
order correction. By including the order d in the decay rates of the eigenfunction expansion excellent 
agreement is obtained between the asymptotic and numerical results, shown here for s = 0.000 125. 
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FIGURE 7. Relative error in i?tegrated concentration us. time. The relative error between the 
eigenfunction solution with O(6) corrections Ja, and the numerical solution J,, is shown; note that 
the error decreases approximately proportionally to F .  This validates the first two orders of the 
asymptotic theory. The variation in the curves is due to the probabilistic error of the particle method. 

The integrated concentration within the dipole at time t is given by 
a. 

J( t )  = f C($, t )  dA = 471 C dn (1, &), (5.15) 
JG2 n=O 

where the integration domain 9 is the interior of the Lamb dipole. The coefficients dn 
in the eigenfunction expansion (5.4) for initial condition (5.14) are 

(5.16) 

Figure 6(a) is a comparison of the integrated concentration within the dipole, J, 
computed by (5.15) and a particle method simulation. The solid curve is the 
eigenfunction solution in the limit E + 0 and the dashed curves are the particle-method 
results for E = 0.001, 0.0005, 0.00025, 0.000 125. Each of the numerical simulations is 
an ensemble average of 3 x lo5 particles and the numerical time step At,  was refined 
until the numerical time-stepping error became the same size as the probabilistic error 
(see Appendix A). The decay of the integrated concentration within the dipole occurs 
on the slow timescale, ct ,  and the convergence of the particle method to the asymptotic 
limit, E+O,  is slow owing to the large O(d) correction to the n = 0 leading-order 
symmetric decay rate (5.13b). 

Figure 6(b)  is a graph of integrated concentration within the dipole, J, and 
incorporates the O(& corrections for the decay rates in the eigenfunction solution. The 
solid curve is the eigenfunction solution for c = 0.000 125 and the results of the particle 
method (squares) exactly overlap with this solution. There are also O(d) corrections to 
the coefficients in (5.15) but the numerical error in the particle method is of the same 
order as these corrections so we could not obtain a numerical measurement of these 
quantities for comparative purposes. 

Figure 7 is the relative error between the eigenfunction and numerical solutions 
versus time. The relative error consists of three independent contributions. The sources 
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FIGURE 8. Concentration us. streamfunction for E t  = 0.15, and E = 0.000125. The concentration 
within the dipole becomes proportional to the slowest decaying eigenmode (i.e. proportional to the 
streamfunction at leading order). The eigenfunction sum (solid line) agrees well with the data 
obtained from the particle method (squares). 

of error are: the systematic time-stepping error of the numerical method which can be 
controlled by choosing the time step At sufficiently small; the probabilistic error of the 
numerical method due to the random-walk simulation of diffusion which can be 
controlled by choosing the number of particles sufficiently large; and the asymptotic 
error in the perturbation theory which can be controlled by choosing the non- 
dimensional diffusion coefficient e sufficiently small. The time step of the numerical 
integration was refined until the systematic time-stepping error was buried in the 
probabilistic noise; thus the chief contribution to the error in figure 7 is from the 
asymptotic sources. Note that the random fluctuations of the relative error about the 
mean are due to the statistical error. For a fixed time the relative error in figure 7 is 
proportional to e; this verifies the asymptotic error estimation. The linear growth of the 
relative error with time is a result of the higher-order corrections in the decay rates. 

Figure 8 is a comparison of the eigenfunction and numerical solutions for the 
concentration profile within the dipole for e = 0.000 125 and et = 0.15. The 
concentration has been homogenized along streamlines owing to shear dispersion. 
Figure 8 can be thought of as the concentration profile along a line segment connecting 
the centres of the dipole lobes. Positive (negative) values of 11. correspond to the upper 
(lower) half of the dipole. The initial delta function quickly decays to a concentration 
profile proportional to the streamfunction owing to the more rapid exponential decay 
of the higher eigenmodes. Then the concentration within the dipole slowly approaches 
the symmetric eigenmode for large times because of the small difference in the 
(anti)symmetric decay rates. This can be seen in figure 8 as concentration slowly leaks 
into the lower half of the dipole from the upper half. 

Figure 9 is a comparison of the asymptotic prediction (curves) and numerical 
measurements (error bars) of the (anti)symmetric eigenmode decay rates, At ,  (hi) 
versus the natural logarithm of the PCclet number. The error bars on the numerical 
measurements are plus or minus one standard deviation and were determined by 



Advection of a passive scalar by a vortex couple 243 

14 1 
I .:.. 

. . . . . . . Corrected symmetric 
- Corrected antisymmetric 

Leading order ................. I 

6.75 1.25 1.15 8.25 8.75 9.25 
In (Pe) 

FIGURE 9. Asymptotic decay rate us. PCclet number. The decay rate for large times as a function of 
Peclet number is shown for the even and odd eigenfunctions. The dotted line represents the leading- 
order estimate of the decay rate, given by the lowest eigenvalue of the averaged diffusion equation. 
The curves incorporate the d correction to this decay rate. The data with error bars are the 
measurements of the decay rate by the particle method. Note that the numerical results converge to 
the asymptotic theory which slowly approaches the leading-order approximation to the lowest 
eigenvalue as the PCclet number increases. 

measuring decay rates of several realizations. The convergence of the decay rates to the 
asymptotic limit is evident as well as the large correction term to the symmetric decay 
rate for the range of Piclet numbers, 1000-8000, studied. 

6.  Discussion 
The transport of a passive scalar by a Lamb dipole in the limit of large Peclet number 

has been studied in this paper. It has been shown that an arbitrary initial concentration 
within the dipole is first averaged on closed streamlines by shear-augmented dispersion 
on a timescale of order Pet. Scalar is then transported across the streamlines, on the 
diffusive timescale, Pe. A one-dimensional diffusion equation for the mean con- 
centration on streamlines is derived in $ 3 .  At the edge and along the centreline of the 
dipole a boundary layer of width Pe-f forms; scalar entering this boundary layer is 
rapidly expelled and the concentration drops nearly to zero in the boundary layer. The 
boundary-layer analysis in 54 allows the derivation of an effective boundary condition 
for the averaged diffusion equation. 

In $ 5  the asymptotic results are compared to numerical simulations using a split-step 
particle method. Excellent agreement is obtained in the large-Piclet-number limit, 
verifying the efficacy of both the asymptotic and numerical methods. The concentration 
within the dipole relaxes to a superposition of the lowest two eigenmodes: one 
symmetric, one antisymmetric and for which the concentration is proportional to the 
streamfunction. The corresponding eigenvalue determines the rate of decay of 
concentration within the dipole. 

The methodology in this paper extended previous work in two ways. First, an 
averaging method is introduced that allows us to capture both the initial 
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homogenization along streamlines and the slower diffusion across streamlines. We 
have argued that this process will occur in any region of closed streamlines with non- 
zero shear. Secondly, we have shown how to apply boundary-layer methods to 
understand the decay of scalar in an isolated region of closed streamlines; this is an 
important phenomena for understanding the transport properties of coherent 
structures, like dipoles. 

The decay of the lowest antisymmetric eigenmode is qualitatively a good description 
of the viscous decay of the Lamb dipole. If the Lamb-dipole velocity field is taken as 
an initial condition of the full Navier-Stokes equations, the advection-diffusion of 
vorticity will parallel the advection-diffusion of a passive scalar with the Reynolds 
number playing the role of the Peclet number. Initially, the vorticity is constant along 
streamlines and is proportional to the streamfunction (i.e. the vorticity initial condition 
is in the lowest antisymmetric eigenstate); as noted by Batchelor (1967, p. 534-537) this 
will lead to a decay of the vorticity at a rate proportional to the lowest eigenvalue. 
However, this assumption ignores the formation of the boundary layer; in fact, the 
decaying solution suggested by Batchelor does not conserve vorticity at the edge of the 
dipole. What is clear from this analysis is that a viscous boundary layer forms at  the 
edge of the dipole, which sweeps vorticity to the rear stagnation point and into the 
exterior flow. The analysis above clearly demonstrates that this process occurs on an 
O(Re) timescale. Unfortunately the analysis here can only be used to analyse this 
behaviour qualitatively because the vorticity in the boundary-layer contribution to the 
velocity field is O(Re-') which distorts the dipole on the same timescale as it decays. 
The analysis of this slowly decaying dipole is a goal of our future study. 
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Appendix A. Split-step particle method for advection-diffusion equations 
In this Appendix we analyse the order of error of a split-step particle method used 

to simulate the advection-diffusion equation. The basic idea of a particle method is to 
exploit the well-known connection between a random walk of a particle and its 
probability distribution governed by a related diffusion equation (cf. Ghoniem & 
Sherman 1985; Klapper 1992). 

Our analysis of the numerical scheme is directed differently than much of the 
literature; we study the error in the approximation of the kernel of the adv- 
ection-diffusion equation at each time step. This error estimate is then used to analyse 
the error for integration over a fixed time interval. Previous investigators have 
concentrated on the error in the trajectory of a single particle governed by a stochastic 
differential equation (Chang 1987); here we concentrate on the error in the evolution 
of a distribution of particles. In addition, it is assumed that the primary measurements 
will be of concentration integrated over a region (e.g. the interior of the dipole). As 
such, the smoothness of the distribution is relatively unimportant; for reconstructing 
concentration fields gradient methods are probably more appropriate (Ghoniem & 
Sherman 1985; Fogelson 1992). 

An additional problem is that the diffusion kernel has sharp gradients, which might 
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lead to large errors. However, the method of kernel expansion allows us to examine the 
form of the error and to show that for the relevant quantities measured here, the error 
is second-order in time. 

As the advection-diffusion problem (3.1) is linear and time independent, it lends 
itself to a Green’s function solution. If a kernel, K ( x ,  x’ ,  t )  is defined as the solution to 

K, + u * V K  = eV2K+ S(X’) &(I), (A 1) 
then the solution can be propagated forward for a time 7 throughout a convolution, 

C(x ,  I + 7 )  = dx’K(x,  x’, 7 )  C (X ’ ,  t) ,  (A 2) s 
where the integral is taken over all space. In the case of vanishing u the kernel becomes 
the kernel of the n-dimensional diffusion equation 

K ( x ,  x’, t )  = H(r, t )  = ( ~ T c B ~ ) - ~ ”  e-rYi(4et) , r = ( r ( ,  r = x - x ’ .  (A 3) 
At this point several key observations can be made which allow an expansion of the 

kernel of the solution. First note that if u is constant the advection-diffusion equation 
(3.1) can be transformed into the heat equation with a Galilean transformation. 
Second, the kernel of the heat equation, H,  is spatially exponentially localized. This 
leads us to believe that the kernel K can be approximated by H ;  in fact, if the velocity 
is Taylor expanded, the constant leading-order term can be removed by a Galilean 
transformation and the higher-order terms can be incorporated as a series of small 
corrections. 

The velocity can be Taylor expanded at a point x,:  

u (x )  = U i ( X )  = up) + U6j” y j  + fu$L y j  yk  + . . . , (A 4) 
where y = x - x ,  and 

The kernel K can now be expanded in terms of H ;  at leading order 

K(x, x,, t )  z H(5, t ) ,  <$ = Yi-U?’t. (A 6) 
Higher-order corrections can all be expressed in terms of powers o f t  and gradients of 
H. Substituting an expansion of this form leads to the conclusion that 

where the error term is given by 

and where H and it gradients are always evaluated at 5, t .  
We now describe a standard split-step numerical method that reproduces this kernel 

to order t2 with an error term of the same form. The basic idea is to split the equation 
into an advection step 

c,+u.vc = 0, (A 9) 

and a diffusion step c, = eV2C. (A 10) 
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We are considering the evolution of an ensemble of particles: each of these steps can 
be solved easily for a given particle. The advection step can be solved by integrating 
the characteristic equation 

with a sufficiently high-order scheme (here fourth-order Runge-Kutta), while the 
diffusion step is implemented by randomly displacing the particle with a probability 
density given by the heat-equation kernel (A 3); in two dimensions this is easily 
accomplished with the Box-Muller transformation (cf. Chang 1987 ; Fogelson 1991). 

The numerical scheme used for a time step h is to do a diffusion step for a time :h, 
an advection step for a time h and then a second diffusion step for a time ih. Again 
Taylor expanding the kernel corresponding to each of these processes yields (A 7) with 
an error term of the form (A 8). 

To understand the error due to this numerical scheme, the expression for the error, 
8, is substituted into the convolution (A 2). Integration by parts yields that the error 
after a time step of length h for an initial condition 

dx/dt = u (A 1 1 )  

is given by 

This result dovetails nicely with the known error results for split-step schemes (Strang 
1968); after integration for a time T the error is proportional to Th2. The size of the 
gradient terms in (A 12) also needs to be estimated. Even if the initial condition is non- 
smooth, the eventual state of the system will be a smooth function. From the 
boundary-layer theory herein we expect the solution to have order-unity gradients but 
with second derivatives that scale like cd.  From this estimate it follows that the 
gradients in (A 12) are of order unity, and as such that the error will scale like Th', 
independent of c. 

Particle methods are also subject to a probabilistic error. Suppose that N particles 
are used and p particles are found in some region. Probability theory says that in the 
limit of large N this can be thought of as a single measurement from a Gaussian 
distribution with standard deviation CTN-~, where r z [ ( p / N )  (1 - p / N ) : .  In practice, 
the standard deviation of the measurements here are easily computed and N is chosen 
sufficiently large that the probabilistic error is comparable to the time-stepping error. 

Appendix B. Numerical solution of the boundary-layer integral equation 
This Appendix describes the formulation and numerical solution of the integral 

equation for the boundary-layer profile at section 0 of the Lamb dipole (see figure 2). 
Consider the boundary-layer solution with odd symmetry about centreline m. The 
boundary conditions on the odd boundary-layer solution are given by 

C = 0 along the centreline, (B 1 4  
C+aY+b as Y + m ,  (B 1b) 
C+ 0 as !P+ - co outside the dipole. (B 1 4  

Boundary condition (B 1 b) is really a matching condition between the boundary layer 
and the WKB solution. The constants a, b cannot be imposed arbitrarily because their 
ratio is fixed as discussed in $4. Imposing a unit flux (a = 1) at Y = Yb + 1 determines 
the constant b through the solution of the boundary-layer equations. The inho- 
mogeneous boundary condition (B 1 b) can be transferred into a forcing term in the 
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integral equation by subtracting out the constant-flux part of the concentration, Let 
C(u) be an arbitrary initial profile at section 0 satisfying the boundary condition 
(B l), C ’ ( Y )  be the mapping of C(!P) to 0’ and C”(Y”) be the mapping of C’(!P’) 
back to 0 as discussed in 54. Define 

QY) = c(‘Y)- Y at 0, (B 2 a )  
P(Y) = c ’ ( Y ) - ~ Y ( ~  +erf(Y)) at 0‘. (B 26) 

where @, cf now satisfy a homogeneous boundary condition (cy = 0) in the far field 
inside the dipole at 0 and 0’. The mappings from 0 to 0‘ and then from 0‘ to 0 are 
convolution integrals of the concentration with the boundary-layer kernel : 

C ’ (V )=  d Y G , ( Y , v C ( Y ) =  G,(V,!P)*C(!P) (B 3 a )  

(B 3 b )  

C”(Y”)  = dYG,(Y,  Y ) C ’ ( Y )  = G,(Y”, !P’)*C’(!P’) (B 3c) 

(B 3 4  
The kernels eF, GR are constructed from the Green’s function G in (4.17) by the 
method of images so that the concentrations C ’, @ ’’ satisfy the homogeneous boundary 
conditions 

loz 
= QY, !P)*@(u)+G,(V, u)* Y, 

sr: 
= G R ( y ,  Y )  * i . / ( ~ >  + G,(Y, Y )  * i ~ ( 1  +erf(Y/‘)). 

= 0 along the centreline, (B 4a) 

~ ; , C ; + O  as Y-.OO, (B 4b) 
c ‘ + 0 as Y +- - OD outside the dipole. (B 4c) 

The kernels are given by 

G ( Y , D , ;  Y,Dl)-G(!P‘,Dz; -Y,D,) for !P‘ < Ye, 
G,(Y ,D , ;  Y , D , ) + G , ( ~ , D , ; 2 Y , - Y , D l )  for ‘Y‘ > Ye, 

G( Y ,  D, ; Y ,  0,) for Y < Y,, 
G,( Y,  D, ; !P‘, D,) + G,( Y”, D, ; 2 Yb - Y, 0,) for Y > Yc, 

where Ye = fYb; Y, + 1 is introduced as a numerical artifice to make the com- 
putational domain finite, [0, Y,]. In practice, the value of Y, is increased until the 
boundary-layer solution becomes independent of Y,. For Y, sufficiently large, Yc 
represents the value of Y for which the boundary-layer kernel G becomes the familiar 
diffusion kernel (i.e. F = 1 for Y > YJ. The boundary condition cy = 0 at Y = lu, is 
imposed by the method of images. G is specified in (4.17), G, is G with F = 1 and Dl(D,) 
are 1.0922 (1.5433). Using (B 2a, B 3b) to substitute for @’ in (B 3 4  gives an equation 
for C“ in terms of C: 

(B 5 4  
i 
i 

GF( Y ,  u) = 

GR( Y“, Y )  = 

(B 5b) 

C”( Y”) = G,( Y”, Y’) * G,( Y/ ,  !P) * (e( u) + u). (B 6) 
Equation (B 6 )  is the return map for the concentration at 0 due to one half of the 
dipole. The concentration from the other lobe can be incorporated by requiring the 
total concentration C ; ( Y )  to be an odd function of Y”:  

C “ ( Y )  T = c ” ( y ) - C ” ( - Y ” ) .  (B 7 )  
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Equations (B 6) and (B 7) along with the periodicity condition, c;, = (?, gives an 
integral equation for t( Y) : 

C ’ ( Y )  = G ( Y ,  Y)*c(Y)+z(Y), (B 8) 
where I ,  G are given by 

G( Y ,  !P) = GR( Y ,  Y )  * GF( Y ,  !P) - GR( - Y .  Y )  * GF( Y ,  Y), (B 9 ~ )  
I( Y )  = G( Y ,  !P) * Y- Y .  (R 9b) 

The inhomogeneous term Z ( Y )  is an odd function of Y and decays to zero as 

The numerical solution of (B 8) is accomplished by a forward iteration of the integral 
Y - t m .  

equation : 
Y )  = G( Y ,  Y) * en( Y) + Z( Y). 

Physically, the equation corresponds to a mapping for a diffusion process; thus the 
eigenvalues of the operator are less than unity and a forward iteration of the 
equation will converge to the boundary-layer solution, The convolution integrals 
become matrix multiplications when the integral equation is discretized. Because the 
kernels are exponentially localized within the boundary layer, the trapezoid rule can be 
utilized to numerically integrate the convolutions with exponential accuracy. 

The even boundary-layer solution is found in an exactly analogous manner. The 
boundary condition along the centreline, m, becomes C ,  = 0 and instead of 
subtracting an odd function of Y to homogenize the far-field boundary condition, 
(B 2a) is replaced by 

t ( ~ )  = C(W- Yerf (w at 0. (B 11) 
The boundary-layer solutions are given in figure 4. 
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